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One-dimensional Lennard-Jones systems are investigated by molecular dynam- 
ics simulations. The full Lennard-Jones potential is compared to the repulsive 
Lennard-Jones potential. It is found that the pair correlation function and the 
normalized velocity autocorrelation function agree at high densities and high 
temperature. However, the diffusion coefficient indicates that the attractive 
potential introduces additional correlations into particle dynamics which are not 
reflected in the statics. These results are in agreement with three-dimensional 
studies. 
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INTRODUCTION 

Recently, perturbation theories (1) have been developed which describe the 
liquid state. Properties of complex systems can now be obtained by a 
suitable perturbation from a simple reference system. The manner in which 
the reference system is selected forms the basis of the various perturbation 
theories. In the Weeks-Chandler-Anderson theory (2) the intermolecular 
potential is split into a purely repulsive and a purely attractive part. The 
purely repulsive system is taken as the reference system. By simulating both 
model systems with the full (repulsions and attractions) potential and 
systems with only the repulsive potential, the roles of repulsions and 
attractions in determining thermodynamic and transport properties can be 
assessed. In this note we report on our molecular dynamics calculations of 
one-dimensional Lennard-Jones systems. 
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M O D E L  

The full Lennard-Jones (FLJ) potential has the form 

U(X)=4[(I /X) '2-(1/X)6],  X < 2 . 5  

= 0 x > 2.5 ( l )  

whereas the repulsive Lennard-Jones (RLJ) potential has the form 

U(X) = 4[(1/X) '2- ( l / X )  6 + 1/4],  X 4 21/6 

= 0 X > 2 I/6 (2) 

Here X is the molecular separation. All results will be given in the usual 
reduced units. Lengths are measured in units of o, velocity in units of 
(Elm)', and time in units of o(m/E)�89 where o is the length of a particle, m 
is the mass of a particle, and c is the well depth of the potential. 

The initial particle configuration is specified as follows: starting with N 
particles (N = 1000) one-dimensional number densities, O, of 0.935, 0.72, 
and 0.65 were selected for study. The particles were initially placed on 
lattice sites with spacing 1/p. The particle velocities were selected from a 
Maxwellian distribution by the Box-Muller method. (3) Newton's equations 
of motion were integrated by the Runge-Kutta-Gil l  method using a step 
size of 0.005. Periodic boundary conditions are imposed on the equations of 
motion. This means that if X i is the position of particle i in the line, there 
are two periodic images at Xi _+ L where L is the length of the basic cell. L 
is determined by fixing the number density N/L. A given particle interacts 
with all particles and images within the potential range. However, because 
the potential range is limited to 2.5, particles can only interact with at most 
their third nearest neighbor. A "box scheme" is not needed for one- 
dimensional calculations because of the small number of pair interactions 
which must be considered. 

R E S U L T S  

Initial relaxation to the equilibrium phase was determined by following 
the temperature fluctuations. After an appropriate number of equilibrium 
steps (see Table I) data were stored on magnetic tape for subsequent 
analysis. Haus and Raveche (4) have investigated the relaxation behavior of 
one-dimensional hard rods. They found that the approach of a dynamic 
property such as the pressure to the exact equilibrium value was not a 
sufficient indicator of structural relaxation. One needs to follow the relax- 
ation of the singlet distribution function and the order parameter f(t) 
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Table I. The Results for All the Systems a 

p Range NONEQ EQ U E T P D 

231 

0.65 2.5 154 1400 - 0.441 - 0.053 0.775 0.873 0.144 

0.65 2 I/6 89 1400 0.048 0.411 0.725 1.40 0.177 
0.65 2.5 77 1400 - 0.109 2.40 5.02 7.89 0.464 

0.65 21/6 77 1400 0.419 2.95 5.06 8.50 0.478 
0.72 2.5 105 1400 - 0.549 - 0.151 0.796 1.28 0.117 

0.72 21/6 89 1400 0.070 0.440 0.738 2.01 0,136 

0.935 2.5 106 1400 - 0.599 - 0.235 0.727 10.41 0.030 

0.935 2 t/6 81 1400 0.443 0.803 0.722 11.21 0.031 

a o is the number density, range is the potential range, NONEQ is the number 
of time steps needed for temperature relaxation, EQ is the number of 
additional steps obtained, U is the average potential energy per particle, E is 
the average total energy per particle, T is the average temperature, P is the 
average pressure, and D is the diffusion coefficient. 

defined as 

N 

1 2cos[2 0x,(t)l (3) f(t) = ~ 
I 

where 0 is the number density, N is the number of system particles, and 
Xi(t ) is the position of particle i at time t. In the initial periodic lattice f ( t )  
is equal to 1; in a random array f(t) will fluctuate about zero. One finds 
that at low densities f(t) rapidly decays to zero. However, at the very high 
density of 0.935 there is still some residual order. The singlet distribution 
function, g~(x), is defined so that gl(x)dx is the probability that any one of 
the N particles will be found at a distance between X and X + AX 
(AX = 0.01) from the position X: ~ on the initially ordered array. It is 
calculated from 

M No N 
1 

g l ( X ) -  NoMNp ~m ~ ~ n ( X : ~  X~)  (4) 
1 k 

where n(X: ~ - X~) is the number of particles a distance X away from the 
initial periodic lattice sites. This quantity is averaged over all particles N, all 
lattice sites No, and all time steps M. A random array is expected to have 
g l ( X ) ~  1. One notes that this prediction is approached as the number of 
time steps used is increased. However, there is still some residual order and 
it is more pronounced at the higher density. Similar results were obtained 
by Haus and Raveche r for hard rod systems. Structural relaxation re- 
quired 1000 additional time steps; all these as well as the velocity equilibra- 
tion steps were discarded for the reported calculations. 
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In the Table I we present the results for our studies. The temperature, 
T, is obtained by averaging over time steps: 

M N 
T -  1 MN ~m ~i Vi2(m) (5) 

where Vi2(m) is the square of the velocity of particle i at time m. The 
pressure, P, is determined via the virial theorem: 

P = p T + ~ X , (m)F, (m)  (6) 
J 

where Xz(m ) and F~(m) are the position and total force on particle i at time 
m, respectively. 

The phase space trajectories allow one to evaluate any function of 
coordinates and momenta.  The pair correlation function, g(X), describes 
the local structure of the system. In general, g(X) is calculated from the 

Fig. 1. 
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The pair correlation function for RLJ and FLJ; p = 0.65. 
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operational definition 

(n(X)} 
g(x) -  02AX (7) 

where (n(X)} is the average number of pairs having separations between X 
and X + AX. We have set AX = 0.01 in our calculations and have averaged 
over 200 time origins as well as over 1000 particles. In Figs. 1 and 2, g(X) is 
graphed for two different densities. The results for the FLJ and the RLJ are 
in closest agreement at higher densities. Systems with densities of 0.935, 
0.72, and 0.65 have approximate nearest-neighbor distances of 1.07, 1.39, 
and 1.54, respectively. The range of the repulsive potential is 21/6~ 1.12. 
Hence, the higher density states have their nearest-neighbor distance near 
the repulsive region in the potential and it is expected that the g(X) of the 
RLJ systems would be an excellent representation for the FLJ systems 
under these conditions. Such results have also been obtained for three- 
dimensional systems by Sehofield (5) and Chen and Rahman. (6) 

The relaxation of the normalized velocity autocorrelation function 
(NVAF), tp(t), provides information about particle motions. The NVAF is 

G(X) 

Fig. 2. 

7.0-- 

5 . 0 -  

3 . 0 -  

I O -  

,o : 0.935 
- -  FLJ (T:  0.727) 
. . . . .  RLJ (T :  0.722] 

0 1.0 2.0 3.0 40 5.0 

• 

The pair correlation function for RLJ and FLJ: P = 0.935. 



234 Bishop, Derosa, and Lalli 

Fig. 3. 
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The normal ized  veloci ty  au tocor re la t ion  funct ion for RLJ  and  FLJ ;  p = 0.65. 

determined from the data by 
M N v,(t + m) V,(m) 

= E ETvi2(m ) (8) 

where Vi(m ) is the velocity of particle i at time m. Wc have averaged over 
all particles (1000) and over 200 time origins of data. The results arc 
compared in Figs. 3 and 4 for different densities. In all cases, the NVAF for 
the RLJ systems are more positive than those for the FLJ systems. In 
addition, the higher the density or the higher the temperature, the closer the 
NVAFs are. The diffusion coefficient, D, has been calculated by a Simpson 
integration of the NVAF, 

D = ( v 2 ) f 0 % ( 0  at (9) 

The upper limit of the integral was selected to be the region where q~(t) 
becomes mostly noise. The D's are in the table. D for the RLJ is greater 
than that of the FLJ reflecting the NVAF results. Such conclusions were 
also obtained for three-dimensional systems by Kushick and Berne, (7) 
Schofield, (5) and Chen and Rahman. (6) 

CONCLUSIONS 

Our studies of one-dimensional Lennard-Jones systems parallel those 
of others on three dimensional systems. A RLJ potential predicts approxi- 
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Fig. 4. The normalized velocity autocorrelation function for RLJ and FLJ; p = 0.935. 

mately the same g ( X )  and N V A F  at high densities and temperatures. 
However,  D of the RL J  is greater than that of the FLJ,  which indicates that 
the attractive part  of the potential introduces additional correlations into 
the particle dynamics,  which is not mirrored in the static properties. We are 
currently examining a number  of theoretical models in order to elucidate 
these effects. 
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